Tuesday 15 May 2012

Atracurium Besylate


Class: Neuromuscular Blocking Agents
VA Class: MS200
Chemical Name: 2,2′- [1,5-Pentanediylbis [oxy(3-oxo-3,1-propanediyl)]]bis[1-[(3,4-dimethoxyphenyl)methyl] -1,2,3,4-tetrahydro-6,7-dimethoxy-2-methylisoquinolinium] dibenzenesulfonate
Molecular Formula: C65H82N2O18S2
CAS Number: 64228-81-5
Brands: Tracrium



  • Should be administered only under supervision of qualified clinicians experienced in the administration of neuromuscular blocking agent therapy.1




Introduction

Nondepolarizing neuromuscular blocking agent.1


Uses for Atracurium Besylate


Skeletal Muscle Relaxation


Production of skeletal muscle relaxation during surgery after general anesthesia has been induced.1 2


Facilitation of endotracheal intubation;1 2 however, succinylcholine generally is preferred in emergency situations where rapid intubation is required.17 58 80 83 84 86 91 94 A single dose should not be used in place of succinylcholine for rapid sequence induction of anesthesia (“crash intubation”).2


Treatment to increase pulmonary compliance during assisted or controlled respiration after general anesthesia has been induced.1 2


Has been used for facilitation of mechanical ventilation in intensive care settings.1 133 134 135 167


Atracurium Besylate Dosage and Administration


General



  • Adjust dosage carefully according to individual requirements and response.1




  • Assess neuromuscular blockade and recovery in patients undergoing anesthesia; a peripheral nerve stimulator is recommended to accurately monitor the degree of muscle relaxation and to minimize the possibility of overdosage.1




  • To avoid patient distress, administer only after unconsciousness has been induced.1



Facilitation of Endotracheal Intubation



  • Endotracheal intubation for nonemergency surgical procedures generally can be performed within 2–2.5 minutes following administration.1 2 (See Onset and also Duration under Pharmacokinetics.)



Maintenance of Neuromuscular Blockade



  • Repeated administration of maintenance doses does not have a cumulative effect on duration of neuromuscular blockade,1 2 9 24 42 43 provided recovery from blockade is allowed to begin prior to administering maintenance doses.1




  • Rate of spontaneous recovery from neuromuscular blockade following discontinuance of maintenance infusion usually is comparable to that following administration of a single IV injection.1 (See Onset and also Duration under Pharmacokinetics.)



Reversal of Neuromuscular Blockade



  • To reverse neuromuscular blockade, administer a cholinesterase inhibitor (e.g., neostigmine, pyridostigmine, edrophonium), usually in conjunction with an antimuscarinic (e.g., atropine, glycopyrrolate) to block adverse muscarinic effects of the cholinesterase inhibitor.1 9 16 17 18 19 21 23 24 26




  • Under balanced anesthesia, reversal generally can be attempted about 20–35 minutes after the initial dose or 10–30 minutes after the last maintenance dose, when recovery of muscle twitch has started.1




  • Complete reversal generally is achieved within 8–10 minutes after administration of the cholinesterase inhibitor and antimuscarinic.1



Administration


Administer IV only; do not administer IM.1 2


IV Administration


For solution and drug compatibility information, see Compatibility under Stability.


Administer initial (intubating) dose by rapid IV injection;1 2 HID administer maintenance dosage for prolonged surgical procedures by intermittent IV injection1 2 or continuous IV infusion.1 3 57 60 90 118 119


Consult specialized references for specific procedures and techniques of administration.


Do not mix in the same syringe or administer through the same needle as an alkaline solution.1


Dilution

For continuous IV infusion, dilute atracurium besylate injection to the desired concentration (usually 0.2 or 0.5 mg/mL) in 5% dextrose, 5% dextrose and 0.9% sodium chloride, or 0.9% sodium chloride injection.1 Use within 24 hours.1


Dosage


Available as atracuium besylate; dosage expressed in terms of the salt.1


Pediatric Patients


Skeletal Muscle Relaxation

Initial (Intubating) Dosage

IV

Infants and children 1 month to 2 years of age: 0.3–0.4 mg/kg when used concomitantly with halothane anesthesia.1 132 169 170 171 (See Onset and also Duration under Pharmacokinetics.)


Children >2 years of age should receive dosages recommended for adults.1 (See Adults under Dosage and Administration.)


Insufficient data for recommendation of a specific initial dose of atracurium besylate in infants and children following administration of succinylcholine.132


Maintenance Dosage

Intermittent IV Injection

Infants and children may require more frequent doses than adults.1 2 132


Children >2 years of age should receive doses recommended for adults.1 (See Adults under Dosage and Administration.)


Continuous IV Infusion

Not recommended in children <2 years of age.1 169 170 171


Children >2 years of age should receive dosages recommended for adults.1 (See Adults under Dosage and Administration.)


Adults


Skeletal Muscle Relaxation

Initial (Intubating) Dosage

IV

0.4–0.5 mg/kg.1 2 (See Onset and also Duration under Pharmacokinetics.)


Reduce initial dosage by about 33% (i.e., to 0.25–0.35 mg/kg) if steady-state anesthesia has been induced with enflurane or isoflurane.1 2 37 169 170 171 (See Specific Drugs under Interactions.)


Consider reducing initial dosage by about 20% if steady-state anesthesia has been induced with halothane.1 2 86 (See Specific Drugs under Interactions.)


If administering following succinylcholine, reduce dosage to 0.3–0.4 mg/kg.1 2 86 Reduce dosage further (e.g., to 0.2–0.3 mg/kg) when inhalation anesthetics are also administered concomitantly.1 2 86 (See Specific Drugs under Interactions.)


Maintenance Dosage

Intermittent IV Injection

0.08–0.1 mg/kg, administered as necessary.1 2 (See Onset and also Duration under Pharmacokinetics.)


Administer first maintenance dose generally 20–45 minutes after the initial dose in patients undergoing balanced anesthesia.1 2


Administer repeat maintenance doses at relatively regular intervals (i.e., from 15–25 minutes in patients undergoing balanced anesthesia).1 2 Administration at longer intervals may be possible if higher maintenance doses (i.e., up to 0.2 mg/kg) are used or if used with enflurane or isoflurane.1 2


Continuous IV Infusion

Initially, 9–10 mcg/kg per minute may be necessary to rapidly counteract spontaneous recovery from neuromuscular blockade.1 3 57 118 5–9 mcg/kg per minute generally maintains 89–99% neuromuscular blockade in patients receiving balanced anesthesia; however, adequate blockade may occur with infusion rates of 2–15 mcg/kg per minute.1


Initiate continuous IV infusion only after early spontaneous recovery from IV dose is evident.1


Reduce infusion rate by about 33% if steady-state anesthesia has been induced with enflurane or isoflurane.1 (See Specific Drugs under Interactions.)


Consider a smaller reduction in the infusion rate if steady-state anesthesia has been induced with halothane.1 (See Specific Drugs under Interactions.)


Special Populations


Renal Impairment


Dosage adjustments not required.1 2 169 170 171


Burn Patients


Substantially increased doses may be required due to development of resistance.1 143 144 145 146 147 (See Burn Patients under Cautions.)


Cardiopulmonary Bypass Patients with Induced Hypothermia


Infusion rate required to maintain adequate surgical relaxation during hypothermia (i.e., 25–28°C) is approximately 50% of the infusion rate necessary in normothermic patients.1 57 79


Intensive Care Settings


Average infusion rates of 11–13 mcg/kg per minute (range: 4.5–29.5 mcg/kg per minute) have been used in adults; infusion rates may be higher in pediatric patients.1 Dosage requirements may increase or decrease with time.168 (See Intensive Care Settings under Cautions.)


Patients with Myasthenia Gravis


Administer at low initial doses and with careful monitoring in well-controlled patients whose usual therapy is continued up to the time of surgery.114 115 116 130


Patients with Cardiovascular Disease


Initial dose of 0.3–0.4 mg/kg administered slowly or in fractional doses over 1 minute.1 2 132 169 170 171 (See Cardiovascular Effects under Cautions.)


Other Populations


Patients with an increased risk of histamine release (e.g., history of severe anaphylactoid reactions or asthma): Initial dose of 0.3–0.4 mg/kg administered slowly or in fractional doses over 1 minute.1 2 132 169 170 171


Patients in whom potentiation of neuromuscular blockade or difficulties with reversal of blockade may occur (e.g., neuromuscular disease, severe electrolyte disturbances, carcinomatosis): Consider dosage reduction.1 2 However, no clinical experience to date in these patients, and no specific doses are recommended.1 2 (See Neuromuscular Disease and also Electrolyte Disturbances under Cautions.)


Cautions for Atracurium Besylate


Contraindications



  • Known hypersensitivity to atracurium besylate or any ingredient in the formulation.1



Warnings/Precautions


Warnings


Respiratory Effects

Potential for severely compromised respiratory function and respiratory paralysis.80 81 82 83 86


Should be used only by individuals experienced in the use of neuromuscular blocking agents and in the maintenance of an adequate airway and respiratory support.1 Facilities and personnel necessary for intubation, administration of oxygen, and assisted or controlled respiration should be immediately available.1


IV cholinesterase inhibitor (e.g., neostigmine, pyridostigmine, edrophonium) should be readily available.1 80 89 (See Reversal of Neuromuscular Blockade under Dosage and Administration.)


Use with caution in patients with pulmonary impairment or respiratory depression.b


Sensitivity Reactions


Hypersensitivity Reactions

Serious hypersensitivity reactions, including anaphylactic or anaphylactoid reactions, reported.1


Use with caution and at lower initial doses in patients with a history of severe anaphylactoid reactions.1 2


General Precautions


Neuromuscular Disease

Possible exaggerated neuromuscular blockade in patients with neuromuscular disease (e.g., myasthenia gravis, Eaton-Lambert syndrome).1 2 114 115 116


Monitor degree of neuromuscular blockade with a peripheral nerve stimulator; consider dosage reduction.1 2 114 115 116


Burn Patients

Resistance to therapy1 143 144 145 147 148 can develop in burn patients, particularly those with burns over 25–30% or more of body surface area.143 144 145 146 147 148 149


Resistance generally becomes apparent ≥1 week after the burn,143 144 145 146 147 148 149 peaks ≥2 weeks after the burn,144 145 146 148 persists for several months or longer,144 146 and decreases gradually with healing.143 144 146 148


Consider possible need for substantially increased doses.1 143 144 145 146 147 (See Distribution: Special Populations, under Pharmacokinetics.)


Histamine Release

Possible substantial histamine release.1 2


Use with caution and at lower initial doses in patients in whom substantial histamine release would be particularly hazardous (e.g., those with clinically important cardiovascular disease) and in patients with any history suggesting a greater risk of histamine release (e.g., history of severe anaphylactoid reactions or asthma).1 2


Safety in patients with asthma not established.1


Cardiovascular Effects

Exhibits minimal effects on heart rate;4 9 12 13 14 31 36 41 67 therefore, will not counteract the bradycardia induced by many anesthetic agents or by vagal stimulation.1 2


Use with caution and at lower initial doses in patients with clinically important cardiovascular disease because of potential for substantial histamine release.1 2


Intensive Care Setting

Possible prolonged paralysis and/or muscle weakness or atrophy.b


Continuous monitoring of neuromuscular transmission recommended during neuromuscular blocking agent therapy in intensive care setting.168 Do not administer additional doses before there is a definite response to nerve stimulation tests.168 If no response is elicited, discontinue administration until a response returns.168


Seizures reported rarely in patients with predisposing factors (e.g., head trauma, cerebral edema, hypoxic encephalopathy, viral encephalitis, uremia) receiving continuous IV infusions for facilitation of mechanical ventilation in intensive care settings.168


Electrolyte Disturbances

Monitor the degree of neuromuscular blockade with a peripheral nerve stimulator and consider dosage reduction in patients with severe electrolyte disturbances (i.e., hypermagnesemia, hypokalemia, hypocalcemia).1 2 86


Malignant Hyperthermia

Malignant hyperthermia is rarely associated with use of neuromuscular blocking agents and/or potent inhalation anesthetics.1 137 139 141 b Be vigilant for its possible development and prepared for its management in any patient undergoing general anesthesia.1 141


Carcinomatosis

Monitor the degree of neuromuscular blockade with a peripheral nerve stimulator and consider dosage reduction.1 2 86


Specific Populations


Pregnancy

Category C.1


Lactation

Not known whether atracurium is distributed into milk.1 Caution advised if used in nursing women.1


Pediatric Use

Safety and efficacy not established in children <1 month of age.132


Large amounts of benzyl alcohol (i.e., 100–400 mg/kg daily) have been associated with toxicity in neonates;1 161 162 163 164 165 166 each mL of atracurium besylate injection in multiple-dose vials contains 9 mg of benzyl alcohol.1


Geriatric Use

Use with caution.b However, no substantial differences in safety, efficacy, or dosage requirements relative to younger adults.1


Hepatic Impairment

Use with caution.b


Renal Impairment

Use with caution.b


Common Adverse Effects


Skin flush.1


Interactions for Atracurium Besylate


Specific Drugs

































Drug



Interaction



Comments



Anesthetics, general (enflurane, halothane, isoflurane)



Increased potency and prolonged duration of neuromuscular blockade1 10 24 31 35



Reduced atracurium dosage recommended1 (See Dosage under Dosage and Administration)



Anticonvulsants (carbamazepine, phenytoin)



Decreased duration and/or degree of neuromuscular blockadeb



Close monitoring recommended; adjust atracurium dose accordinglyb



Anti-infectives (aminoglycosides, bacitracin, clindamycin, lincomycin, polymyxins, tetracyclines)



Possible increased neuromuscular blockade1 b



Lithium



Possible increased neuromuscular blockade1



Magnesium salts



Possible increased neuromuscular blockade1 b



Use with caution1 b



Neuromuscular blocking agents, nondepolarizing



Possible increased or decreased neuromuscular blockade1 169 170 171



Procainamide



Possible increased neuromuscular blockade1



Quinidine



Possible increased neuromuscular blockade1



Succinylcholine



Variable effects (increased128 129 or decreased117 neuromuscular blockade) reported1



Administer atracurium in reduced dosage and only after patient has recovered from succinylcholine-induced neuromuscular blockade1


Atracurium Besylate Pharmacokinetics


Absorption


Bioavailability


Poorly absorbed from the GI tract.b


Onset


Time to maximum neuromuscular blockade decreases as the dose increases.1 22 24 39


Following IV administration of 0.4–0.5 mg/kg, maximum neuromuscular blockade generally occurs within 3–5 minutes1 2 (range: 1.7–10 minutes).5 22 26 27 35 40


Duration


Duration of maximum neuromuscular blockade increases as the dose increases.1 22 24 35 39


Duration of neuromuscular blockade induced by 0.4–0.5 mg/kg under balanced anesthesia is about 20–35 minutes.1 2 17 35 86 Recovery generally is 25 and 95% complete approximately 35–45 and 60–70 minutes, respectively, after the injection.1 86 169 170 171


Regardless of the dose, recovery from the maximum effect of neuromuscular blockade is 95% complete in approximately 30 minutes1 (range: 12–75.7 minutes)2 6 22 24 26 31 39 100 under balanced anesthesia and approximately 40 minutes1 (range: 6–104 minutes)5 6 24 27 34 100 under anesthesia with enflurane, isoflurane, or halothane.


Rate of recovery from neuromuscular blockade is more rapid in children than adults.41 88 92


Alkalosis may enhance recovery.3 54


Special Populations


Hepatic dysfunction does not substantially alter duration of and rate of recovery from neuromuscular blockade.19 40 49 103 104 105 106 131


In patients with renal failure, onset may be slightly delayed;40 103 105 however, renal dysfunction does not substantially alter duration of and rate of recovery from neuromuscular blockade.19 40 49 103 104 105 106 131


In patients undergoing cardiopulmonary bypass surgery under induced hypothermia, duration of blockade may be prolonged.57 79 97


Distribution


Extent


Distributed into extracellular fluid;2 85 rapidly reaches site of action at motor end-plate of myoneural junction.b


Crosses the placenta in small amounts.1 2 61 107


Plasma Protein Binding


82%.45 46


Special Populations


In burn patients, possible increased protein binding (possibly to α1-acid glycoprotein) with subsequent decreases in the free fraction of circulating drug.143 144 145 147


Elimination


Metabolism


Rapidly metabolized via Hofmann elimination and nonspecific enzymatic ester hydrolysis; the liver does not appear to play a major role.1 9 31


Elimination Route


Excreted principally in urine and also in feces via biliary elimination.1 2 3 9 22 31 54 108 109 160


Half-life


Biphasic; terminal elimination half-life is approximately 20 minutes.1 2 47 48 49 50 104


Stability


Storage


Parenteral


Injection

2–8°C; do not freeze.1 2


Use within 14 days once removed from refrigeration, regardless of whether injection was subsequently rerefrigerated.1


Compatibility


For information on systemic interactions resulting from concomitant use, see Interactions.


Parenteral


Unstable in the presence of acids and bases.2 May be incompatible with alkaline solutions (e.g., barbiturate solutions).1


Solution CompatibilityHID

Compatible for 24 hours at 5 or 25°C;HID use within 24 hours when diluted with dextrose 5% in water or sodium chloride 0.9% injection.1










Compatible



Dextrose 5% in sodium chloride 0.9%



Incompatible



Ringer’s injection, lactated



Variable



Dextrose 5% in water



Sodium chloride 0.9%


Drug Compatibility























Admixture CompatibilityHID

Compatible



Bretylium tosylate



Cimetidine HCl



Ciprofloxacin



Dobutamine HCl



Dopamine HCl



Esmolol HCl



Gentamicin sulfate



Isoproterenol HCl



Lidocaine HCl



Morphine sulfate



Potassium chloride



Procainamide HCl



Vancomycin HCl



Incompatible



Aminophylline



Cefazolin sodium



Heparin sodium



Quinidine gluconate



Ranitidine HCl



Sodium nitroprusside

































Y-Site CompatibilityHID

Compatible



Amiodarone HCl



Cefazolin



Cefuroxime sodium



Cimetidine HCl



Co-trimoxazole



Dobutamine HCl



Dopamine HCl



Epinephrine HCl



Esmolol HCl



Etomidate



Fenoldopam mesylate



Fentanyl citrate



Gentamicin sulfate



Heparin sodium



Hetastarch in lactated electrolyte injection (Hextend)



Hydrocortisone sodium succinate



Isoproterenol HCl



Lorazepam



Midazolam HCl



Milrinone lactate



Morphine sulfate



Nitroglycerin



Ranitidine HCl



Sodium nitroprusside



Vancomycin HCl



Incompatible



Diazepam



Propofol



Thiopental sodium


ActionsActions



  • Produces skeletal muscle relaxation by causing a decreased response to acetylcholine (ACh) at the myoneural (neuromuscular) junction of skeletal muscle.1 b




  • Exhibits high affinity for ACh receptor sites and competitively blocks access of ACh to motor end-plate of myoneural junction; may affect ACh release.b




  • Blocks the effects of both the small quantities of ACh that maintain muscle tone and the large quantities of ACh that produce voluntary skeletal muscle contraction; does not alter the resting electrical potential of the motor end-plate or cause muscular contractions.b




  • Exhibits minimal cardiovascular effects.2 5 6 7 8 9 12 13 14 15 20 22 24 25 26 27 28 88 93



Advice to Patients



  • Importance of women informing clinicians if they are or plan to become pregnant or plan to breast-feed.1




  • Importance of informing clinician of existing or contemplated concomitant therapy, including prescription and OTC drugs, as well as any concomitant illnesses (e.g., cardiovascular disease, neuromuscular disease).1




  • Importance of informing patients of other important precautionary information.1 (See Cautions.)



Preparations


Excipients in commercially available drug preparations may have clinically important effects in some individuals; consult specific product labeling for details.


* available from one or more manufacturer, distributor, and/or repackager by generic (nonproprietary) name


















Atracurium Besylate

Routes



Dosage Forms



Strengths



Brand Names



Manufacturer



Parenteral



Injection, for IV use



10 mg/mL*



Atracurium Besylate Injection (preservative-free in single-use vials or with benzyl alcohol 0.9% in multiple-dose vials)



Baxter, Bedford, Hospira, Mayne, Sicor



Tracrium (preservative-free in single-use vials or with benzyl alcohol 0.9% in multiple-dose vials)



Abbott



Disclaimer

This report on medications is for your information only, and is not considered individual patient advice. Because of the changing nature of drug information, please consult your physician or pharmacist about specific clinical use.


The American Society of Health-System Pharmacists, Inc. and Drugs.com represent that the information provided hereunder was formulated with a reasonable standard of care, and in conformity with professional standards in the field. The American Society of Health-System Pharmacists, Inc. and Drugs.com make no representations or warranties, express or implied, including, but not limited to, any implied warranty of merchantability and/or fitness for a particular purpose, with respect to such information and specifically disclaims all such warranties. Users are advised that decisions regarding drug therapy are complex medical decisions requiring the independent, informed decision of an appropriate health care professional, and the information is provided for informational purposes only. The entire monograph for a drug should be reviewed for a thorough understanding of the drug's actions, uses and side effects. The American Society of Health-System Pharmacists, Inc. and Drugs.com do not endorse or recommend the use of any drug. The information is not a substitute for medical care.

AHFS Drug Information. © Copyright, 1959-2011, Selected Revisions August 2007. American Society of Health-System Pharmacists, Inc., 7272 Wisconsin Avenue, Bethesda, Maryland 20814.




References



1. Abbott Laboratories. Tracrium (atracurium besylate) injection prescribing information. North Chicago, IL; 2000 Mar.



2. Burroughs Wellcome Co. Tracrium pharmacist product information. Research Triangle Park, NC; 1983 Dec.



3. Collins GE. (Burroughs Wellcome Co, Research Triangle Park, NC): Personal communication; 1984 Mar 22.



4. Lee C, Yang E, Katz RL. Clinical neuromuscular pharmacology of BW 33A. Anesth Analg. 1982; 61:199-200.



5. Goudsouzian NG, Liu LMP, Coté CJ et al. Safety and efficacy of atracurium in adolescents and children anesthetized with halothane. Anesthesiology. 1983; 59:459-62. [IDIS 178106] [PubMed 6688932]



6. Rupp SM, Fahey MR, Miller RD. Neuromuscular and cardiovascular effects of atracurium during nitrous oxide-fentanyl and nitrous oxide-isoflurane anaesthesia. Br J Anaesth. 1983; 55(Suppl 1): 67-70S. [IDIS 172717] [PubMed 6688020]



7. Brandom BW, Woelfel SK, Cook DR et al. Clinical pharmacology of atracurium in infants. Anesthesiology. 1983; 59:A440.



8. Hunt TM, Hughes R, Payne JP. Preliminary studies with atracurium in anaesthetized man. Br J Anaesth. 1980; 52:238-9P.



9. Basta SJ, Ali HH, Savarese JJ et al. Clinical pharmacology of atracurium besylate (BW 33A): a new non-depolarizing muscle relaxant. Anesth Analg. 1982; 61:723-9. [IDIS 157360] [PubMed 6213181]



10. Savarese JJ, Basta SJ, Ali HH et al. Neuromuscular and cardiovascular effects of BW 33A (atracurium) in patients under halothane anesthesia. Anesthesiology. 1982; 57:A262.



11. Basta SJ, Savarese JJ, Ali HH et al. Histamine-releasing potencies of atracurium besylate (BW 33A), metocurine, and d-tubocurarine. Anesthesiology. 1982; 57:A261.



12. Barnes PK, Thomas VJE, Boyd I et al. Comparison of the effects of atracurium and tubocurarine on heart rate and arterial pressure in anaesthetized man. Br J Anaesth. 1983; 55(Suppl 1):91-4S.



13. Basta SJ, Savarese JJ, Ali HH et al. Histamine-releasing potencies of atracurium, dimethyl tubocurarine and tubocurarine. Br J Anaesth. 1983; 55(Suppl 1):105-6S. [IDIS 172726] [PubMed 6338892]



14. Pokar H, Brandt L. Haemodynamic effects of atracurium in patients after cardiac surgery. Br J Anaesth. 1983; 55(Suppl 1):139S. [IDIS 172736] [PubMed 6688010]



15. Hughes R, Payne JP. Clinical assessment of atracurium using the single twitch and tetanic responses of the adductor pollicis muscles. Br J Anaesth. 1983; 55(Suppl 1):47-52S.



16. Baird WLM, Kerr WJ. Reversal of atracurium with edrophonium. Br J Anaesth. 1983; 55(Suppl 1):63-6S.



17. Foldes FF, Nagashima H, Boros M et al. Muscular relaxation with atracurium, vecuronium and duador under balanced anesthesia. Br J Anaesth. 1983; 55:(Suppl 1):97-103S. [IDIS 172725] [PubMed 6190489]



18. Rowlands DE. Atracurium in clinical anaesthesia. Br J Anaesth. 1983; 55(Suppl 1):125-8S. [IDIS 165994] [PubMed 6131682]



19. Hunter JM, Jones RS, Utting JE. Atracurium in renal failure. Br J Anaesth. 1983; 55(Suppl 1):129S. [IDIS 172733] [PubMed 6688007]



20. Philbin DM, Machaj VR, Tomichek RC et al. Haemodynamic effects of bolus injections of atracurium in patients with coronary artery disease. Br J Anaesth. 1983; 55(Suppl 1):131-4S. [IDIS 172734] [PubMed 6131683]



21. Goudsouzian NG, Liu LMP, Gionfriddo M et al. The dose response effect of atracurium in infants. Anesth Analg. 1984; 63:223.



22. Hilgenberg JC. Comparison of the pharmacology of vecuronium and atracurium with that of other currently available muscle relaxants. Anesth Analg. 1983; 62:524-31. [IDIS 170170] [PubMed 6132564]



23. Anon. Atracurium. Lancet. 1983; 1:394-5. [PubMed 6130383]



24. Payne JP, Hughes R. Evaluation of atracurium in anaesthetized man. Br J Anaesth. 1981; 53:45-54. [IDIS 129791] [PubMed 7459185]



25. Fragen RJ, Robertson EN, Booij LHDJ et al. A comparison of vecuronium and atracurium in man. Anesthesiology. 1982; 57:A253.



26. Katz RL, Stirt J, Murray AL et al. Neuromuscular effects of atracurium in man. Anesth Analg. 1982; 61:730-4. [IDIS 157361] [PubMed 6285767]



27. Stirt JA, Murray AL, Katz RL et al. Atracurium during halothane anesthesia in humans. Anesth Analg. 1983; 62:207-10. [IDIS 166904] [PubMed 6687515]



28. Robertson EN, Booij LHDJ, Fragen RJ et al. Clinical comparison of atracurium and vecuronium (ORG NC 45). Br J Anaesth. 1983; 55:125-9. [IDIS 165994] [PubMed 6131682]



29. Rosewarne FA. Vecuronium and atracurium. Br J Anaesth. 1983; 55:1042. [IDIS 176811] [PubMed 6138052]



30. Robertson EN, Booij LHDJ, Crul JF. Vecuronium and atracurium. Br J Anaesth. 1983; 55:1043. [IDIS 176812] [PubMed 6626407]



31. Ali HH, Savarese JJ, Basta SJ et al. Clinical pharmacology of atracurium: a new intermediate acting nondepolarizing relaxant. Semin Anesth. 1982; 1:57-62.



32. Scott RPF, Goat VA. Atracurium: its speed of onset. A comparison with suxamethonium. Br J Anaesth. 1982; 54:909-11. [IDIS 157910] [PubMed 7115602]



33. Brandom BW, Woelfel SK, Cook DR et al. Relative potency of atracurium in children during halothane, isoflurane, or thiopental-fentanyl anesthesia. Anesthesiology. 1983; 59:A442.



34. Goudsouzian NG, Liu LMP, Coté CJ et al. Clinical pharmacology of atracurium (BW 33A) in adolescents anesthetized with halothane. Anesthesiology. 1982; 57:A414.



35. Sokoll MD, Gergis SD, Mehta M et al. Safety and efficacy of atracurium (BW 33A) in surgical patients receiving balanced or isoflurane anesthesia. Anesthesiology. 1983; 58:450-5. [IDIS 170743] [PubMed 6340561]



36. Nguyen HD, Nagashima H, Kaplan R et al. Relaxation with BW33A under neurolept and enflurane anesthesia. Anesthesiology. 1982; 57:A277.



37. Ramsey FM, White PA, Stullken EH et al. Enflurane potentiation of neuromuscular blockade by atracurium. Anesthesiology. 1982; 57:A255.



38. Cook DR, Rudd GD, Brandom BW. Clinical pharmacology of atracurium (BW33A) in pediatric patients. Anesthesiology. 1982; 57:A415.



39. Hughes R, Hunt TM, Payne JP. Recovery from neuromuscular blockade by atracurium. Br J Anaesth. 1980; 52:634P.



40. Hunter JM, Jones RS, Utting JE. Use of atracuriu

No comments:

Post a Comment